
Factoring as a Service

Luke Valenta, Shaanan Cohney, Alex Liao,
Joshua Fried, Satya Bodduluri, Nadia Heninger

University of Pennsylvania

seclab.upenn.edu/projects/faas

seclab.upenn.edu/projects/faas

Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key

N = pq modulus

e encryption exponent

Private Key

p, q primes

d decryption exponent
(d = e−1 mod (p − 1)(q − 1))

Factoring

Problem: Factor N into p and q

I Lets an attacker compute the private key.

I The RSA assumption is not known to be equivalent to
factoring

I Factoring is much harder than multiplication

I Best known algorithm: number field sieve

How long does factoring take with the number field sieve?

Answer 1

L(1/3, 1.923) = exp(1.923(logN)1/3(log logN)2/3)

How long does factoring take with the number field sieve?

Answer 2

512-bit RSA: < 1 core-year

768-bit RSA: < 1,000 core-years

1024-bit RSA: ≈ 1,000,000 core-years

2048-bit RSA: Minimum recommended key size today.

How long does factoring take with the number field sieve?

Answer 3

512-bit RSA: 7 months — large academic effort [Cavallar et al., 1999]

768-bit RSA: 2.5 years — large academic effort [Kleinjung et al., 2009]

512-bit RSA: 2.5 months — single machine [Moody, 2009]

512-bit RSA: 72 hours — single Amazon EC2 machine [Harris, 2012]

512-bit RSA: 7 hours — Amazon EC2 cluster [Heninger, 2015]

512-bit RSA: < 4 hours — Amazon EC2 cluster [this work]

Brief Primer on Amazon EC2

c4.8xlarge

I 36 virtualized cores

I two Intel Xeon E5-2666 v3 processor chips

I 60GB RAM

Pricing

I guaranteed rate of $1.783/hr (on-demand)

I bid on unused capacity at fluctuating rate $0.35+ (spot)

Brief Primer on Amazon EC2

c4.8xlarge

I 36 virtualized cores

I two Intel Xeon E5-2666 v3 processor chips

I 60GB RAM

Pricing

I guaranteed rate of $1.783/hr (on-demand)

I bid on unused capacity at fluctuating rate $0.35+ (spot)

The Number Field Sieve Algorithm

I Polynomial selection Choose a good number field
embarassingly parallel, 120 CPU-hours

I Sieving Factor small-ish integers to find algebraic relations
embarassingly parallel, 2,800 CPU-hours

I Linear algebra Build matrix from relations, reduce to find squares
semi-parallel, 250 CPU-hours

I Square root Take square roots and check if factor N
mostly non-parallel, 10 CPU-minutes

N

polynomial
selection

sieving linear
algebra

square
root

p

The Number Field Sieve Algorithm

I Polynomial selection Choose a good number field
embarassingly parallel, 120 CPU-hours

I Sieving Factor small-ish integers to find algebraic relations
embarassingly parallel, 2,800 CPU-hours

I Linear algebra Build matrix from relations, reduce to find squares
semi-parallel, 250 CPU-hours

I Square root Take square roots and check if factor N
mostly non-parallel, 10 CPU-minutes

N

polynomial
selection

sieving linear
algebra

square
root

p

The Number Field Sieve Algorithm

I Polynomial selection Choose a good number field
embarassingly parallel, 120 CPU-hours

I Sieving Factor small-ish integers to find algebraic relations
embarassingly parallel, 2,800 CPU-hours

I Linear algebra Build matrix from relations, reduce to find squares
semi-parallel, 250 CPU-hours

I Square root Take square roots and check if factor N
mostly non-parallel, 10 CPU-minutes

N

polynomial
selection

sieving linear
algebra

square
root

p

The Number Field Sieve Algorithm

I Polynomial selection Choose a good number field
embarassingly parallel, 120 CPU-hours

I Sieving Factor small-ish integers to find algebraic relations
embarassingly parallel, 2,800 CPU-hours

I Linear algebra Build matrix from relations, reduce to find squares
semi-parallel, 250 CPU-hours

I Square root Take square roots and check if factor N
mostly non-parallel, 10 CPU-minutes

N

polynomial
selection

sieving linear
algebra

square
root

p

The Number Field Sieve Algorithm

I Polynomial selection Choose a good number field
embarassingly parallel, 120 CPU-hours

I Sieving Factor small-ish integers to find algebraic relations
embarassingly parallel, 2,800 CPU-hours

I Linear algebra Build matrix from relations, reduce to find squares
semi-parallel, 250 CPU-hours

I Square root Take square roots and check if factor N
mostly non-parallel, 10 CPU-minutes

N

polynomial
selection

sieving linear
algebra

square
root

p

Making Sieving Fast

I Goal: Distribute many small tasks to a compute cluster

I Problems: CADO-NFS job distribution has scaling issues

I Solution: Replace job distribution with Slurm

I More Problems: Cannot submit many small tasks to Slurm
at once

I More Solutions: Fix with batching logic

Now we can parallelize sieving away, right?!

Making Sieving Fast

I Goal: Distribute many small tasks to a compute cluster

I Problems: CADO-NFS job distribution has scaling issues

I Solution: Replace job distribution with Slurm

I More Problems: Cannot submit many small tasks to Slurm
at once

I More Solutions: Fix with batching logic

Now we can parallelize sieving away, right?!

Making Sieving Fast

I Goal: Distribute many small tasks to a compute cluster

I Problems: CADO-NFS job distribution has scaling issues

I Solution: Replace job distribution with Slurm

I More Problems: Cannot submit many small tasks to Slurm
at once

I More Solutions: Fix with batching logic

Now we can parallelize sieving away, right?!

Making Sieving Fast

I Goal: Distribute many small tasks to a compute cluster

I Problems: CADO-NFS job distribution has scaling issues

I Solution: Replace job distribution with Slurm

I More Problems: Cannot submit many small tasks to Slurm
at once

I More Solutions: Fix with batching logic

Now we can parallelize sieving away, right?!

Making Sieving Fast

I Goal: Distribute many small tasks to a compute cluster

I Problems: CADO-NFS job distribution has scaling issues

I Solution: Replace job distribution with Slurm

I More Problems: Cannot submit many small tasks to Slurm
at once

I More Solutions: Fix with batching logic

Now we can parallelize sieving away, right?!

Making Sieving Fast

I Goal: Distribute many small tasks to a compute cluster

I Problems: CADO-NFS job distribution has scaling issues

I Solution: Replace job distribution with Slurm

I More Problems: Cannot submit many small tasks to Slurm
at once

I More Solutions: Fix with batching logic

Now we can parallelize sieving away, right?!

Reality Check

I You can’t actually launch that many spot instances at once

I Amazon runs pretty close to capacity

I On-demand instances are much more expensive

Price spikes: launching a 50-node cluster

Making Linear Algebra Fast

Goal: divide up large matrix into smaller grids, which must
communicate periodically.

Problems: Solutions:

CADO-NFS linear algebra
runtime increased with more
nodes

Use Msieve’s implementation
instead; performs better for
512-bit keys

High communication
requirements make networking a
bottleneck

Use Amazon’s Enhanced
Networking for 10Gbit bandwidth

Inter-node latency is higher than
expected (150µs)

Tune implementation parameters
instead

Making Linear Algebra Fast

Goal: divide up large matrix into smaller grids, which must
communicate periodically.

Problems: Solutions:

CADO-NFS linear algebra
runtime increased with more
nodes

Use Msieve’s implementation
instead; performs better for
512-bit keys

High communication
requirements make networking a
bottleneck

Use Amazon’s Enhanced
Networking for 10Gbit bandwidth

Inter-node latency is higher than
expected (150µs)

Tune implementation parameters
instead

Making Linear Algebra Fast

Goal: divide up large matrix into smaller grids, which must
communicate periodically.

Problems: Solutions:

CADO-NFS linear algebra
runtime increased with more
nodes

Use Msieve’s implementation
instead; performs better for
512-bit keys

High communication
requirements make networking a
bottleneck

Use Amazon’s Enhanced
Networking for 10Gbit bandwidth

Inter-node latency is higher than
expected (150µs)

Tune implementation parameters
instead

Making Linear Algebra Fast

Goal: divide up large matrix into smaller grids, which must
communicate periodically.

Problems: Solutions:

CADO-NFS linear algebra
runtime increased with more
nodes

Use Msieve’s implementation
instead; performs better for
512-bit keys

High communication
requirements make networking a
bottleneck

Use Amazon’s Enhanced
Networking for 10Gbit bandwidth

Inter-node latency is higher than
expected (150µs)

Tune implementation parameters
instead

Make Linear Algebra Easier
by Making Sieving Harder

Oversieving “generating excess relations”

30 35 40 45

1

1.5

Relations (M)

L
in
al
g
T
im

e
(h
rs
)

lbp 28; td 70

lbp 28; td 120

Putting it All Together

I Spend more money to make factoring faster, but with
diminishing returns

I Large clusters are prone to random node failures and instability

21 22 23 24 25 26

40

80

120

160 256,64
256,16

128,64 128,64

64,64

128,16
128,4

64,4
32,16

32,4
16,4

16,4
16,1 8,1

4,1 2,1 1,1

Time (hrs)

C
os
t
(U

S
D
) lbp 28; td 120

lbp 29; td 120
lbp 29; td 70

The Cost of Research

August 2015 EC2 bill

Shoutout to our sponser: Thanks Amazon!

Is anyone still using 512-bit RSA?

Is anyone still using 512-bit RSA?
[RSA export + FREAK attack]

International Traffic in Arms Regulations [April 1, 1992 version]

Category XIII--Auxiliary Military Equipment ...

(1) Cryptographic (including key management) systems, equipment, assemblies,

modules, integrated circuits, components or software with the capability of

maintaining secrecy or confidentiality of information or information

systems...

Commerce Control List [current]

a.1.b.1. Factorization of integers in excess of 512 bits (e.g., RSA);

April 2015: FREAK attack [BDFKPSZZ 2015]: Implementation
flaw; use fast 512-bit factorization to downgrade modern browsers
to broken export-grade RSA.

“. . . we observe that 512-bit factorization is currently solvable at
most in weeks. . . ”

Who is using 512-bit RSA?
TLS measurements [scans.io]

HTTPS
March 2015: 8.9M (26.3%) HTTPS servers support RSA EXPORT

September 2015: 2.6M (7.7%) HTTPS servers support RSA EXPORT

SMTP missed the memo
September 2015: 1.5M (30.8%) SMTP/StartTLS servers support
RSA EXPORT

Who is using 512-bit RSA?
TLS measurements [scans.io]

HTTPS
March 2015: 8.9M (26.3%) HTTPS servers support RSA EXPORT

September 2015: 2.6M (7.7%) HTTPS servers support RSA EXPORT

SMTP missed the memo
September 2015: 1.5M (30.8%) SMTP/StartTLS servers support
RSA EXPORT

DNSSEC: Domain Name System Security Extensions
[Rapid7 + SURFnet datasets + our own scans]

Key sizes are way too small

06/
201

4

09/
201

4

12/
201

4

03/
201

5

06/
201

5

09/
201

5

103

105

107

N
u
m
b
er

of
ke
y
s 512

768

1024

1280

1536

2048

DNSSEC: Domain Name System Security Extensions
[Rapid7 + SURFnet datasets + our own scans]

RFC 6781 [2012]

“it is estimated that most zones can safely use 1024-bit keys for at
least the next ten years.”

DNSSEC: Domain Name System Security Extensions
[Rapid7 + SURFnet datasets + our own scans]

Keys are rotated infrequently

0 90 180 270 360 450

0

0.5

1

Duration (days)

C
D
F

512 KSK

512 ZSK

All KSK

All ZSK

RRSig

DKIM: Domain-Keys Identified Mail
[Rapid7 + SURFNET + our own scans]

Public Keys
512 bits 103 (0.9%)
384 bits 20 (0.2%)
128 bits 1 (0.0%)
Parse error 591 (5.1%)

Total 11,637

128-bit key

[REDACTED] bdb6389e41d8df6141acdda91a7c23c1

sage: time factor(Integer("bdb6389e41d8df6141acdda91a7c23c1",16))

CPU times: user 68.3 ms, sys: 17.3 ms, total: 85.6 ms

Wall time: 132 ms

14060786408729026139 * 17934291173672884499

DKIM: Domain-Keys Identified Mail
[Rapid7 + SURFNET + our own scans]

Public Keys
512 bits 103 (0.9%)
384 bits 20 (0.2%)
128 bits 1 (0.0%)
Parse error 591 (5.1%)

Total 11,637

128-bit key

[REDACTED] bdb6389e41d8df6141acdda91a7c23c1

sage: time factor(Integer("bdb6389e41d8df6141acdda91a7c23c1",16))

CPU times: user 68.3 ms, sys: 17.3 ms, total: 85.6 ms

Wall time: 132 ms

14060786408729026139 * 17934291173672884499

DKIM: Domain-Keys Identified Mail
[Rapid7 + SURFNET + our own scans]

Public Keys
512 bits 103 (0.9%)
384 bits 20 (0.2%)
128 bits 1 (0.0%)
Parse error 591 (5.1%)

Total 11,637

128-bit key

[REDACTED] bdb6389e41d8df6141acdda91a7c23c1

sage: time factor(Integer("bdb6389e41d8df6141acdda91a7c23c1",16))

CPU times: user 68.3 ms, sys: 17.3 ms, total: 85.6 ms

Wall time: 132 ms

14060786408729026139 * 17934291173672884499

Takeaways

I Amazon EC2 is not a traditional supercomputing platform

I Anyone can factor 512-bit RSA in <4 hours for $75 on the
cloud

I Use RSA responsibly: keys ≥ 2048 bits

I Backdoors and legal restrictions on crypto are bad

Factoring as a Service

Luke Valenta, Shaanan Cohney, Alex Liao,
Joshua Fried, Satya Bodduluri, Nadia Heninger

University of Pennsylvania

seclab.upenn.edu/projects/faas

seclab.upenn.edu/projects/faas

